
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

�Correspond
E-mail addr
Nuclear Instruments and Methods in Physics Research A 561 (2006) 203–208

www.elsevier.com/locate/nima
Space-charge transport limits of ion beams in periodic
quadrupole focusing channels

Steven M. Lund�, Sugreev R. Chawla

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Available online 24 March 2006
Abstract

It has been empirically observed in both experiments and particle-in-cell simulations that space-charge-dominated beams suffer strong

growth in statistical phase-space area (degraded quality) and particle losses in alternating gradient quadrupole transport channels when

the undepressed phase advance s0 increases beyond about 85� per lattice period. Although this criterion has been used extensively in

practical designs of strong focusing intense beam transport lattices, the origin of the limit has not been understood. We propose a

mechanism for the transport limit resulting from strongly chaotic classes of halo particle resonances near the core of the beam that allow

near-edge particles to rapidly increase in oscillation amplitude when the space-charge intensity and the flutter of the matched beam

envelope are both sufficiently large. When coupled with a diffuse beam edge and/or perturbations internal to the beam core that can drive

particles outside the edge, this mechanism can result in large and rapid halo-driven increases in the statistical phase-space area of the

beam, lost particles, and degraded transport. A core–particle model is applied to parametrically analyze this process. Extensive self-

consistent particle in cell simulations is employed to better quantify properties of the space-charge limits and to verify core–particle

model predictions.

r 2006 Elsevier B.V. All rights reserved.

PACS: 29.27.Bd; 41.75.�i; 52.59.Sa; 52.27.Jt

Keywords: Intense beam; Space charge; Emittance growth; Simulation
1. Introduction

The maximum transportable current density of an ion
beam with high space-charge intensity propagating in a
periodic focusing lattice is a problem of practical importance
[1,2]. Accelerator applications such as Heavy Ion Fusion
(HIF), High Energy Density Physics (HEDP), and transmu-
tation of nuclear waste demand a large flux of particles on
target. A limit to the maximum current density can result
from a variety of factors: instability of low-order moments of
the beam describing the centroid and envelope, instability of
higher order collective modes internal to the beam, growth in
statistical phase-space area (rms emittance growth), excessive
halo generation, and species contamination associated with
issues such as the electron cloud problem. Simulations were
first used to analyze the maximum current density transpor-
e front matter r 2006 Elsevier B.V. All rights reserved.
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table in quadrupole channels [3,4] and provided guidance
beyond initial heuristic estimates [5]. Experiments later
obtained results consistent with simulations [1,2].
The present work describes a promising new approach

toward predicting the maximum transportable current
density in a periodic quadrupole lattice due to intrinsic
space-charge limits [6]. Previous studies to predict space-
charge related transport limits in the absence of focusing
errors and species contamination have not proved fully
successful beyond a moment level description of low-order
beam instabilities. Although moment-based centroid and
envelope descriptions reliably predict regions of parametric
instability where machines cannot operate [7,8], such
models are overly optimistic when compared to simulations
and experiments which observe degraded transport due to
emittance growth and particle losses where the moment
models predict stability [1–4]. On the other hand, higher-
order collective mode theories based on the equilibrium
KV distribution [10] predict broad parametric regions of
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Fig. 1. (color online) Beam stability regions in a FODO quadrupole

lattice.
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instability where stability is observed in simulations with
more realistic distributions [3,4] and in experiment [1,2].
The space-charge limit model proposed is based on
particles oscillating outside, but near the beam edge
exchanging energy with the oscillating space-charge field
of a envelope matched beam core leading to increased
particle oscillation amplitude, emittance blow-up, and
particle losses. This model can be applied to a wide range
of matched core distributions and does not require an
equilibrium core—which circumvents the practical problem
of no smooth core equilibrium distribution being known.
The increased understanding of the origin of the observed
limits obtained promises more reliable design of optimal
intense beam transport channels.

We denote the phase advance of particles oscillating in a
periodic focusing lattice in the presence and absence of
beam space-charge by s and s0 (both measured in degrees
per lattice period) [7,8]. The undepressed phase-advance s0
provides a measure of the strength of the linear applied
focusing forces of the lattice that is relatively insensitive to
the details of the lattice. s0 is generally made as large as
beam stability will allow—because stronger focusing results
in smaller beam cross-sectional area leading to smaller,
more economical accelerator structures. s can be unam-
biguously defined by an rms equivalent, matched KV
equilibrium beam [7,8] where all particles internal to the
beam have the same phase advance. The ratio s=s0 is a
normalized measure of relative space-charge strength with
s=s0 ! 1 corresponding to a warm beam with zero space-
charge forces and s=s0 ! 0 corresponding to a cold beam
with maximum space-charge forces. The maximum possi-
ble current density for a specified beam line-charge density
will occur when s=s0 is as small as possible.

Neglecting image charge effects, single particle and beam
centroid oscillations are stable if s0o180� [8]. The
parameter space s0 2 ð0; 180�Þ and s=s0 2 ð0; 1Þ can be
regarded as potential machine operating points. Envelope
models predict well-understood bands of strong parametric
instability when s0490� and s=s0o1 [7]. The parameter
region excluded by envelope instabilities for FODO
quadrupole transport is indicated (in blue) in Fig. 1.

Considerations beyond centroid and envelope instabil-
ities exclude further regions of s0–s parameter space.
Transportable current limits based on preservation of
beam statistical emittance and suppression of particle
losses for a matched beam propagating in a periodic
FODO lattice of 84 electric quadrupoles were experimen-
tally studied by Tiefenback at LBNL [1,2]. It was found
empirically that transport was stable (i.e., statistical
emittance growth and particle losses below measurement
thresholds) when

s20 � s2o1
2
ð120�Þ2. (1)

The additional parameter region this criterion excludes for
machine operation (partially overlapping the envelope
band) is indicated (in red) in Fig. 1. For high space-charge
intensity with s=s0o0:5, this limit is more important than
the envelope instability band because it is encountered first
when approaching from low s0. The stability bound (1) has
been applied by simply requiring that s0o120�=

ffiffiffi
2
p
’ 85�.

It is observed that transport becomes more sensitive to
errors near the boundary of stability.

2. Particle-in-cell simulations

Self-consistent electrostatic particle-in-cell (PIC) simula-
tions have been carried out for a variety of initial beam
distributions launched in a FODO quadrupole transport
channel with 50% quadrupole occupancy (Z ¼ 1

2
) and

linear, piecewise-constant quadrupole forces. The trans-
verse slice module of the WARP code [9] is employed to
advance an initial transverse distribution with zero axial
velocity spread. Applied focusing forces are adjusted for
specified s0. Currents are adjusted for specified s=s0 using
fixed rms emittances (ex ¼ ey ¼ 50mmmrad). Numerical
parameters are set for high resolution (X100 radial zones
across the beam core on a square mesh andX100 residence
corrected axial steps per lattice period) and good statistics
(X400 particles per cell). A cylindrical beam pipe is large
enough to suppress particle losses and image charge effects.
Simulation results are in qualitative agreement with Eq. (1)
for a wide variety of initial distribution functions. Initial
distributions employed are rms matched transforms of
continuous focusing equilibrium waterbag and thermal
distributions [8], KV, and semi-Gaussian distributions.
This contrasts earlier work where waterbag and Gaussian
loads did not include space-charge screening effects and
were far from initial force-balance [4]. Only the initial KV
load employed is a true equilibrium of the periodic focusing
channel. No exact, smooth equilibrium distributions are
presently known for periodic focusing channels.
Parameters to the right of the stability bound (Eq. (1))

and to the left of the envelope instability band lead to
statistical (rms) emittance growth and particle losses.
x- and y-plane average emittance [ðex þ eyÞ=2] growth can
be rapid and large as illustrated in Fig. 2(a) for a focusing
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Fig. 2. (color online) PIC simulations of (a) the plane-averaged emittance

growth for different initial distributions in a FODO quadrupole channel,

and (b) the fraction of the beam distribution evolving outside the core.

(s0 ¼ 100�; Z ¼ 0:5;Lp ¼ 0:5m;s=s0 ¼ 0:2, and e ¼ 50mmmrad.)
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Fig. 3. (color online) Contours of emittance growth for an initial

semi-Gaussian distribution in a FODO quadrupole channel. (Z ¼ 0:5;
Lp ¼ 0:5m, and e ¼ 50mmmrad).
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channel with s0 ¼ 100� and three initial distributions: semi-
Gaussian, waterbag ‘‘equilibrium’’, and thermal ‘‘equili-
brium.’’ Much of this emittance growth can be traced to
particles that evolve significantly outside the beam core as
evident from Fig. 2(b) which shows the fraction of beam
particles which evolve (at one or more points) more than
1.25 and 1.5 times the statistical beam edge radius

(i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=r2x þ y2=r2y

q
41:25; 1:5 with rx ¼ 2hx2i1=2 and rx ¼

2hx2i1=2 calculated from the evolving distribution). The
similarity of the results for the three very different non-
equilibrium distributions shows that processes degrading
the beam are relatively insensitive to the form of the initial
distribution in deeply unstable parameter regions. Labora-
tory beams are born off a source (injector) and subse-
quently manipulated to match into a transport channel and
are unlikely to be any equilibrium form. More detailed
analysis of the simulation results show that initial beam
distortions leading to the statistical emittance growth are
primarily near the edge of the beam and subsequently act
to strongly perturb the core. Core perturbations are
observed in both the local density and temperature profiles.
These perturbations typically lack elliptical symmetry and
rapidly oscillate into the core with excursions larger near
the beam edge. Beam envelope matches are not signifi-
cantly degraded in the initial stages of instability.
A large number of PIC simulations were carried out to

better quantify parametric regions of instability. Plane
averaged emittance growth contours in s0 and s=s0 are
shown in Fig. 3 for an initial semi-Gaussian distribution.
Irregular grid simulation points are indicated with dots. All
simulations are advanced for six undepressed betatron
periods, which is sufficient for saturation in strongly
unstable regimes. Near the stability boundary, emittance
growth slows and growth factors increase with longer
propagation distance. Colors show logarithmic scale
emittance growth and 1% and 10% threshold contours
(dashed) are labeled separately. The extent of the envelope
instability band and Tiefenback’s stability threshold are
indicated. Results for initial waterbag and thermal
distributions are similar, but the transition to instability
has more structure for the waterbag distribution. Strong
growth regions in all cases are qualitatively consistent with
Tiefenback’s threshold. Emittance growth cannot be
attributed to KV-like modes internal to the beam [10,11].
Much of the emittance growth is associated with particles
that evolve significantly outside the core (see Fig. 2b)
rendering any linear internal mode interpretation ques-
tionable. Also, many KV modes are strongly unstable
(instabilities exist for s=s0o0:3985 even in the continuous
focusing limit) where no rms emittance growth is observed.
KV modes generally predict incorrect parametric varia-
tions of instability (thresholds bend the wrong way). Large
internal modes also possess little free energy to drive
statistical emittance growth [8] and therefore may not be
dangerous if they saturate at small amplitudes.

3. Core–particle model

Consider an unbunched beam of ions of charge q and
mass m propagating with axial velocity bbc (c is the speed
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of light in vacuuo) and relativistic factor gb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2b

q
.

A linear applied focusing lattice is assumed, self-field
interactions are electrostatic. Then the transverse orbit xðsÞ

of a beam particle evolves according to the paraxial
equations of motion [7,8]

x00 þ kxx ¼ �
q

mg3bb
2
bc2

qf
qx

. (2)

Here, s is the axial coordinate of a beam slice, primes
denote derivatives with respect to s, and kxðsÞ is the linear
applied focusing function of the lattice (specific forms can
be found in Ref. [7]), and the electrostatic potential f is
related to the number density of beam particles n by the
Poisson equation r2

?f ¼ �qn=�0 in free-space. �0 is the
permittivity of free space.

The core of the beam is centered on-axis (x ¼ 0 ¼ y),
and is uniform density within an elliptical cross-section
with edge radii rj (henceforth, j ranges over both x and y)
that obey the KV envelope equations

r00j þ kjrj �
2Q

rx þ ry

�
e2j
r3j
¼ 0. (3)

Here, Q ¼ ql=ð2p�0mg3bb
2
bc2Þ ¼ const is the dimensionless

perveance, l ¼ qnðx ¼ 0; y ¼ 0Þrxry ¼ const is the beam
line-charge density, and ej is the rms edge emittance along
the j-plane. We take ej � e ¼ const. For a periodic focusing
channel with lattice period Lp, kjðsþ LpÞ ¼ kjðsÞ, the
envelope is called matched when it has the periodicity of
the lattice, i.e., rjðsþ LpÞ ¼ rjðsÞ. Undepressed particle
phase advances are used to set the lattice focusing functions
kj using cos s0 ¼ ð12ÞTrM where M is the x- or y-plane
transfer map of a single particle (Q ¼ 0) through one lattice
period. We take the kj to be piecewise constant with
occupancy Z 2 ð0; 1�. The matched beam envelope flutter
varies only weakly with Z but increases strongly with
increasing s0. The depressed particle phase advance is
calculated as s ¼ e

R Lp

0 ds=r2j .
It can be shown that the flutter of the matched beam

envelope for periodic FODO quadrupole focusing systems
with piecewise constant kjðsÞ is given approximately (for
s=s051) by [12]

rxjmax

r̄x

� 1 ’ ð1� cos s0Þ
1=2 ð1� Z=2Þ

23=2ð1� 2Z=3Þ1=2
. (4)

Here, Z 2 ð0; 1� is the occupancy of the quadrupoles in the
lattice and r̄x ¼ ð1=LpÞ

R Lp

0 ds rx. Eq. (4) shows that
envelope flutter in a quadrupole channel depends strongly
on s0 and weakly on Z (the variation in rxjmax=r̄x in Z is
�13%).

For a particle evolving both inside and outside the
elliptical beam envelope, Eq. (2) can be expressed as

x00 þ kxx ¼
2QFx

ðrx þ ryÞrx

x (5)

with an analogous equation for the y-plane. Here, Fj

are form factors satisfying F j ¼ 1 inside the beam
(x2=r2x þ y2=r2yp1) and Fx ¼ ðrx þ ryÞðrx=xÞRe½S� and Fy ¼

�ðrx þ ryÞðry=yÞ Im½S� outside the beam (x2=r2x þ y2=r2y41).

S is a complex variable defined as S � ðz =ðr2x � r2yÞÞ½1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr2x � r2y=z2

q
Þ�, where z ¼ xþ iy and i ¼

ffiffiffiffiffiffiffi
�1
p

.

The particle equations of motion (5) are integrated
numerically from initial conditions. We typically launch
particles with initial x and y coordinates outside the beam
edge (i.e., x2=r2x þ y2=r2y41) and with initial angles x0 and y0

consistent with coherent flutter motion of core particles
extrapolated to the location of the particle, i.e., with x0 ¼

r0xx=rx and y0 ¼ r0yy=ry. Diagnostics include particle trajec-
tories, single particle emittances defined by �x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=rxÞ

2
þ ðxr0x � x0rxÞ

2=e2x

q
(�x ¼ 1 at the core distribution

edge), stroboscopic Poincaré phase space plots, and
particle oscillation wavelengths calculated from Fourier
transforms of orbits. Particle trajectories and phase spaces
are analyzed in scaled units (e.g., with x–x0 projections
scaled as x=rx–ðx

0rx � r0xxÞ=ex) to better illustrate oscilla-
tion extents relative to the matched beam core.

4. Core–particle simulations

To illustrate the halo structure, we launch particles along
the x-axis of the elliptical beam in specified regions outside
the beam edge (e.g., x 2 ½1:1; 1:2�rx) with zero incoherent
angle spreads (e.g., x0 ¼ r0xx=rx). Fig. 4 illustrates x–x0

Poincaré phase spaces for particles launched with x 2

½1:1; 1:2�rx for fixed s0 and two values of s=s0: (a) a high
value (weak space charge) well within the stable region of
Fig. 1, and (b) a low value (strong space charge) in the
unstable region. The Poincaré strobe is one lattice period.
Scaled coordinates x=rx and ðx0rx � xr0xÞ=ex are plotted to
remove envelope flutter. The extent of the core is plotted in
red. Extrapolations of the range of initial launch conditions
are indicated in red based on the annular elliptical region
formed if the initial particle conditions evolved with
constant single-particle emittance �x. Note the large change
in scale between the stable and unstable plots. For the
stable case, particles diving in and out of the matched
envelope remain close to the initial launch range and
indicate a weak, high-order resonance. For the unstable
case, numerous resonances near the core become stronger
and overlap causing the region immediately outside the
core to break up into a stochastic sea that closely
approaches the core. A large, four-lobe bounding reso-
nance (KAM surface) persists that ultimately limits the
achievable particle oscillation amplitude. The phase
advance of particles moving outside the envelope is
strongly amplitude dependent ranging from s for ampli-
tudes at the core boundary to s0 for very large amplitudes.
Strong space charge (s=s051) and large matched envelope
oscillations (large s0) provide a strong pump at the lattice
frequency. Numerous harmonics of particle orbits near the
core resonate with the lattice resulting in overlapping
resonances that produce a strongly chaotic region that
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Fig. 5. (color online) Beam stability boundary calculated from a

core–particle model for a FODO quadrupole channel. (Lp ¼ 0:5m,

Z ¼ 0:5, e ¼ 50mmmrad).

Fig. 4. (color online) Core–particle Poincaré phase spaces for s0 ¼ 100�,

s=s0 ¼ 0:67 (a), and s=s0 ¼ 0:2 (b). ðLp ¼ 0:5m; Z ¼ 0:5; e ¼ 50mmmrad).
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approaches the core. This chaotic sea allows particles near
the core to rapidly evolve to large amplitudes(Fig. 5).

A new stability criterion is adopted to estimate where
chaotic halo orbits near the beam core can degrade
transport. When varying s0 and s=s0, we define the
stability boundary to be the first point when approached
from stable regions (low s0) where particle groups
launched near the core (e.g., x 2 ½1:05; 1:10�rx) experience
large increases in oscillation amplitude (e.g., Max½x=rx�

increased to 1:5). Boundary points obtained when particles
launched with x=rx 2 ½1:05; 1:10� increase in amplitude by
factors of 1:5 (triangles) and 1:4 (squares) are plotted in
Fig. 1. The boundary roughly tracks the region of strong
emittance growth observed in experiment and simulations
until the envelope instability band is approached. Results
are relatively insensitive to the choice in initial group radius
and amplitude increase factor. Earlier work by Lagniel [13]
employed a core–particle model to analyze transport limits
but implied overly pessimistic stability criteria (s0o60� and
s=s040:4) seemingly based on rough resonance overlap
estimates.
Halo properties analyzed persist when particles have

finite angular momentum (not launched on-axis). Particles
that leave the core in self-consistent PIC simulations
generate similar Poincaré plots to the core–particle model
for a variety of initial distributions. Single particle
emittance growths of �50 are possible for particles near
the beam edge that enter the halo in unstable regions. If a
significant number of near-edge particles enter the halo,
this can result in strong increases in rms beam emittance
and distortions in the beam phase space (both total and
core). Particles leaving the core in unstable regions rapidly
grow in amplitude over a relatively small number of lattice
periods—consistent with PIC simulations. Moreover, as
observed in simulations and experiment, this halo induced
mechanism for transport degradation is consistent with
increasing sensitivity to the beam distribution and edge
perturbations as the threshold region is approached. The
core–particle model assumption of a uniform density
elliptical beam core is reasonable for strong space charge
due to Debye screening and phase-mixing of initial
perturbations. No periodic, nonuniform density equilibria
are known and core perturbations are observed in PIC
simulations to collectively evolve and disperse leaving
smaller residual fluctuations and a rounded beam edge.
Hence the uniform core model can provide a good
approximation to the average impulse a halo particle
experiences while traveling through the oscillating core. If
the edge of the beam distribution is not sharp, as is
expected for finite s=s0, a significant population of edge
particles can enter the halo and be elevated to large
amplitudes in unstable regions. Due to envelope flutter, the
spatial average temperature T̄x of a beam with constant
emittance ex will vary as T̄x / e2x=r2x. Thus, in a matched
beam envelope the temperature will oscillate with the
period of the lattice (360� phase advance), increasing
where the envelope contracts and conversely decreasing
where the envelope expands. For high s0 these fluctuations
will tend to increase leaving the edge out of force-balance.
On the other hand, the plasma response of the beam
will have characteristic collective phase advance
sp ¼ ð180

�=pÞðLp=rxÞ
ffiffiffiffiffiffiffi
2Q
p

. This frequency will generally
be incommensurate with and much slower than the
temperature oscillations showing that the edge of the beam
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will have a more difficult time readapting to the focusing
kicks as s0 increases and envelope flutter becomes larger.

5. Conclusions

A core–particle model was used to analyze the previously
unexplained origin of space-charge related transport limits
of beams propagating in periodic quadrupole focusing
channels. It was shown that when matched beam envelope
oscillations and space-charge strength are both sufficiently
large, near-edge particles oscillating both inside and
outside the matched beam envelope become chaotic and
can experience large increases in oscillation amplitude. This
resonance halo need not be tenuous and is distinct from
envelope mismatch driven halo [14] because the driving
oscillation is the fast flutter of the matched beam envelope
rather than envelope mismatch modes. The matched
envelope flutter becomes larger with increasing s0, provid-
ing a strong pump that further increases as beam space-
charge forces become larger. Envelope oscillations also
drive large temperature oscillations in the core of the
matched envelope. Because the collective response of the
beam to local force imbalances scales with the plasma
frequency, which is low relative to the lattice frequency, it
is unlikely that the beam edge can consistently adapt. Lack
of edge self-consistency in periodically focused beam
distributions makes it plausible that many near-edge
particles can move sufficiently outside the beam core to
partake in the resonance. Consequently, large distortions in
the beam phase-space and large rms emittance growth can
result. Stability thresholds based on this resonance picture
are in rough agreement with experimental measurements
and simulations. Analogous transport limits to the ones
studied here will occur in other periodic focusing channels.
Generally, unstable parameters will differ due to different
scaling of matched beam envelope flutter. Envelope
mismatch also increases driving envelope excursions and
introduces additional frequencies—likely reducing the
region of stable transport. Work is ongoing to further
clarify the processes described. Further details of this work
can be obtained on the arXiv e-print server [15] and in
future publications.
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